
JOURNAL OF COMPCTATIONAL PHYSICS 69. 175-195 (1987) 

Simple Adaptive Grids for 1 -D Initial Value Problems 

E. A. DORFI* AND L. O’C. DRURY+ 

In solving I-D imtial value problems by implicit tinite dtfference methods it is advantageous 
to use an adaptive grid to provide local regions of high resolution and allow larger time steps 
to be taken. A simple method of constructing such grids is presented and the benefits are 
demonstrated by calculations of Sod’s shock tube problem (G. A. Sod, J. Conrpur. Phy.~. 27, I 
(197X)) and of a supernova explosion. ( 19X7 hcademlc Prrs. Inc 

1. INTRODUCTION 

Most astrophysical flows, even when they only involve pure gas dynamics in one 
spatial dimension, are complicated to compute because many orders of magnitude 
have to be covered in the time and space evolution. Of course this problem is not 
confined to Astrophysics, but it is here particularly acute and has stimulated the 
development of a promising method which at least partially solves the problem, the 
implicit adaptive mesh technique [ 14, 16, 17, 181. Here a fixed number of grid- 
points is redistributed during the evolution to optimize the resolution of developing 
and moving flow features. The system of physical equations is extended by adjoin- 
ing an additional “grid equation” which specifies the spatial distribution of the grid- 
points. The augmented system is then solved simultaneously using an implicit 
method to avoid the very short time steps which the CouranttFriedrichs-Lewy 
stability condition [3] would require if an explicit method were used. 

This simultaneous solution of the physical equations and the grid equation 
should be contrasted with methods in which the physical equations are advanced 
on a fixed grid and the calculation is interrupted at regular intervals for grid rezon- 
ing [S, 63. The solution at the rezoned gridpoints has then to be constructed by 
some interpolation algorithm. On the other hand methods which use an explicitly 
specified transformation of the spatial coordinate system [ 151 may run into 
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problems if the character of the solution changes from continuous to discontinuous 
and in an implicit scheme require the inversion of full rather than band matrices. 
An alternative solution to the problem of resolving large gradients is given in [ 111; 
there, by applying the method of lines, a system of PDEs is converted to ODES and 
then the equations are mapped through an analytical transformation from the 
physical space to the computational space. Powerful methods have been developed 
in constructing multidimensional adaptive grids [2, 71 by choosing one variable to 
determine the mapping from the physical into the computational mesh, but for the 
astrophysical applications we have in mind we need to resolve large gradients in 
many different physical quantities (e.g., density, pressure, opacity, chemical com- 
position, etc.). The moving finite element methods [S, S] look quite promising but 
to our knowledge no results showing high grid refinements in the context of com- 
plicated interacting shock structures have been obtained with these methods. It is 
important to test numerical methods on difficult problems and we regard the 
“supernova explosion” presented in the last section as a suitable touchstone for 
evaluating adaptive grid methods. 

The chief practical difficulty facing the method is that of formulating a satisfac- 
tory grid equation. It should be capable of handling problems with multiple 
variables each varying over many orders of magnitude, it should have the same 
numerical character as the dynamical equations (e.g., 5 point in space and 2 point 
in time), it should be capable of producing grids which are locally compressed by 
factors of at least IO4 when compared with uniform grids, and finally it should be 
computationally efficient (e.g., vectorizable) and easy to program. Unlike the 
problem of discretizing the physical equations this task is purely artificial; thus we 
cannot be guided by physical arguments and must instead rely on numerical prin- 
ciples and a careful analysis of what the equation should do. This leads not to a 
single grid equation, but rather to a general method of constructing an equation 
adapted to the specific problem being studied. While our method is certainly not 
the only way of solving the problem it does appear to be simple and robust. 
Although not free of adjustable parameters we have never had to “fine-tune” them 
and have never produced unphysical grids. 

2. CONSTRUCTION OF A GRID EQUATION 

Let us consider an initial value problem for a system of partial differential 
equations with two independent variables, a spatial variable x and a time variable f. 
We discretize the solution at N grid points, .Y, ,..., .Y~, which we wish to distribute 
during the evolution in such a way that the solution is uniformly resolved; where 
high resolution is required, e.g., where steep gradients occur, the points should be 
concentrated and where lower spatial resolution suffices the points should be spread 
out. Our basic idea is to define measures of these two aspects, the point concen- 
tration n (which one can think of as the attained resolution), and the desired 
resolution R, and then distribute the points so that n is proportional to R, the con- 
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stant of proportionality being determined by the total number of points and the 
separation of the bondaries. The fundamental form of our grid equation is thus 

nxR. (1) 

However, because stability considerations usually require that the point concen- 
tration not change too rapidly in either space or time, we make n proportional not 
directly to R, but to the result of applying temporal and spatial smoothing 
operators to R. 

The point concentration we define to be the number of grid points per length 
scale, 

x 
n, = 

.Y 1+1 - x,’ 

where X is a natural length scale (which may be any smooth positive function of 
space and time) determined by the problem. In the absence of structure in the 
solution a default grid is defined by n constant. Thus if X is independent of x the 
default distribution will be uniform and if X=x it will be logarithmic. More com- 
plicated default grids can easily be created by choosing appropriate definitions of X. 

The desired resolution, R, is a more subjective quantity whose definition 
necessarily depends on the nature of the problem being solved, the numerical 
method being used and the personal bias of the investigator. It is obviously essen- 
tial that R be positive definite, but apart from this it can be any smooth function of 
the solution and its derivatives. A simple prescription which we have found to give 
very satisfactory results is motivated by the idea that in the case of one function,,f, 
the data points should be distributed uniformly in arc-length along the graph ofJ: 
This suggess R = Jl + (4flcl.u)’ which we generalize to several functions, f’, ,..., ,fiM, 
and discretize in the form 

(3) 

where F, is a natural scale associated with the function f, and f,,, =.C(x;). However, 
note that unlike [IS] we do not transform to an “arc-length” coordinate. For 
artificial problems where all variables are of order unity one can of course set all 
scales X,, F, to unity; however in physical applications they are required on dimen- 
sional grounds alone. 

It is perhaps worth noting that R, must be obtained by discretizing some function 
R. This ensures that the only slight dependence of R, on the grid point distribution 
comes from the inevitable discretization error. Clearly the required resolution is an 
intrinsic property of the problem and its solution which should not depend on the 
actual grid. 

Our choice of spatial smoothing is based on the well-known rule of thumb, that 
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for stability the grid spacing should not change from one interval to the next by 
more than about 20 or 30%. We interpret this as the requirement 

a n !+I cc+ 1 
d----d- 

a+1 n, x ’ (4) 

where c( is a measure of the grid “rigidity.” The simplest way to achieve this, bearing 
in mind that R is positive definite. is to smooth the right-hand side of Eq. (1) and 
write 

(5) 

but this smoothing kernel (neglecting for the moment the question of the boundary 
conditions) is the Green’s function associated with the difference operator 

1 -r(a + 1) 6’, (6) 

where 6 denotes a centred difference. Thus we can replace the smoothing on the 
right by a differencing on the left and write 

fi,=n,-x(a+l)(n,+,-2n,+n, ,)xR,. (7) 

Actually as boundary conditions for the grid equation we set the concentration 
gradient to zero, 

n, =n7, n ,% ?=nv , (8) 

so that the true Green’s function is slightly more complicated, but the difference is 
imperceptible except near a boundary. 

To smooth the time dependence we use a similar idea, in effect replacing R(t) by 

R( t - f’ ) exp( - t/s) dt’/r. (9) 

To achieve this we write equation in the form 

ri;=ii,+~(ii,-ri:“‘“~)rR,, (10) 

where At is the time step. The grid then adjusts on a time-scale z and ignores 
variations on shorter time-scales. As with the other scales, 7 can be a constant, or 
vary in some smooth fashion appropriate to the problem. 

Finally we eliminate the constant of proportionality and obtain the grid 
equation, 
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where vi is defined by Eqs. (lo), (7) and (2). (We note in passing that the other two 
obvious ways of writing this equation, ri,R, , = fi, ~, R, and R,/ii, = R,+ l/iz,p , , do 
not appear to function as well numerically in simple tests; when the grid was 
adjusting rapidly roughly twice as many time steps had to be taken, however, in 
practical applications the time step is normally controlled by the physical equations 
so that there should be no significant difference.) The left-hand side of the equation 
is Spoint in space and 2-level in time. Without increasing the complexity R can be 
any smooth function of the solution, its first three spatial derivatives and its first 
time derivative. 

An important aspect of this equation is that with n and R regarded as indeter- 
minate quantities it is summable, i.e., the general solution of the difference equation 
can be written down by reversing the steps taken above. This discrete analog of 
integrability is a nontrivial property and expresses mathematically the separation 
we have enforced between the problem of defining what the grid should do (the 
measures of the attained and desired resolution, n and R) and the problem of 
adjusting the grid to satisfy these requirements as best as possible (the choice of 
temporal and spatial smoothing). Of course this property cannot be used to 
facilitate the solution of the grid equation viewed as an equation for the positions of 
the grid points x,; when explicit expressions for n and R are inserted it merely con- 
verts one system of nonlinear equations into another much more complicated one. 
Its value is rather that it allows general statements to be made about the solutions 
of the grid equation. For example, if an arbitrary grid equation is used to resolve an 
asymmetric structure separating two uniform states, there is no guarantee that the 
asymptotic point concentrations on the left and the right will be equal or related in 
any simple way. However, with our formulation their ratio will be exactly that of 
the asymptotic values of R (normally one, but for some applications one might wish 
to use a “pseudo-Lagrangian” grid and include in R a team proportional to the 
density). In the same way it is the summability which enables us to place bounds on 
the spatial and temporal variation of the grid without knowledge of the specific 
form of R. 

3. TESTS 

We consider first the simple problem of representing the prescribed function 

,f‘= f[ 1 + tanh( lO’(.x - 0.4))] exp[ - ((.y - 0.4)/0.2)‘], 

‘> 

(12) 

on the unit interval [0, I] (tests of this form were an invaluable aid during the 
development of the grid equation). The hyperbolic tangent with a length scale of 
IO 3 is a good model for a shock smoothed by artificial viscosity; the grid must 
resolve both this very steep gradient and the smooth variation contributed by the 
Gaussian term. Because the function is dimensionless and of order unity we can set 
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both scale functions, F and X to one; thus to resolve 
required resolution as 

,,=(* +(;:;~.~)*)‘!* 
and the attained resolution as simply 

1 
n, = 

x, + I - -y, 

the gradients we define the 

(13) 

(14) 

Starting with uniformly distributed points we integrate the grid equation forward in 
time until a stationary distribution is reached. The results with 70 grid points and 
various values of the parameter CI are shown in Figs. l-3. 

On the simple problem the grid equation performs well and exactly as predicted. 
With the least stiff grid, a = 2, we achieve with 70 points a peak resolution 
equivalent to that of a uniform grid with lo4 points. The maximum spatial variation 
of the grid is exactly that specified by the parameter c( and the very asymmetric 
peak inf as a function of x appears on the grid as a symmetric sawtooth in the grid 
index i. We note also that in the regions on the right and the left, where the 
function is essentially zero, the asymptotic point concentrations are equal. 
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FIG. I. Distribution of 70 gridpoints for the test function given in Eq. (12) and G( = 2. (a) Point con- 
centration log n, as a function of grid index i. The dashed line corresponds to an equally spaced grid. (b) 
Test function in physical space. (c) Ratio n,/n,+ , as a function of grid index. The horizontal lines are at 
(M + 1)/a and a/(a + 1). (d) Test function in index space. 
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FIG. 2. As Fig. I but with r= 3 
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FIG. 3. As Fig. 1 but with a = 5. 
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If the point concentration can only vary from point to point by at most a factor 
of 1 + l/cr it is clear that a local refinement of the grid by 10” requires at least 

2mlnlO/ln( 1 + l/x() z 5~0~ 

points (the factor of two comes from the fact that the grid spacing must decrease 
both on the right and on the left when a steep gradient is resolved). The advantage 
of adaptive grid methods is immediately obvious; the attainable resolution increases 
exponentially as the number of points is increased. In our case m = 3 so that with 
r = 2 a minimum of about 30 points is required, with LY = 3 the minimum is 45 and 
with c( = 5 at least 75 are needed. Indeed looking at F‘ig. 3 it is obvious that the grid 
is starting to suffer from “point exhaustion” (e.g., the left- and right-hand point con- 
centrations are no longer equal) although it is still managing to do quite a 
creditable job. In this way one can make a quick and crude estimate of the 
minimum number of grid points needed for any particular problem by summing the 
minimum number of points required to resolve each smallscale feature. 

It should be noted that of this minimum number of points most lie outside the 
regions where high resolution is required and are there only to provide transition 
regions in which the point concentration can increase to the value requested. An 
unfortunate feature of this is that if two smallscale structures requiring similar 
resolution approach each other, the transition regions between the two features 
become unnecessary and the points they contain are released as the features merge. 
If the structures then separate again, or new structures are created, these points 
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FIG. 4. As Fig. 1 but including second derivatives as specified in Eq. (I 5) 



SIMPLEADAPTIVEGRIDS 183 

have to be pulled back in. This can be controlled to some extent by a judicious 
choice of the grid time constant, but if t is made too large there will be a loss of 
resolution in moving features. 

If it is necessary to resolve sharp corners as well as steep gradients this is easily 
achieved. Figure 4 shows the grid obtained by using the definition 

(15) 

with the same test function as before. The double square root is based on the idea 
that if h is the grid spacing, then ~‘(&JcYx~) should be uniform across the grid. The 
spatial discretization of the physical equations will normally have an error O(h’lf’“‘) 
for some small integer n; if this error is to be uniformly distributed across the grid 
we must have l/Ax I,f““‘l ’ ‘I m those regions where I,f““‘l is large. 

4. METHOD OF SOLUTION AND APPLICATIONS 

The crucial test of our algorithm is the solution of the hydrodynamic equations 
(ideal, inviscid) coupled with the grid equation. We use the standard notation of 
gasdynamics; thus denoting the gas density p, velocity u, gas pressure P, internal 
gas energy density E, we get 

g+v.(prr)=O. 

~+v.(puz4)+vP=o. 

;+V(Eu)+PVu=O. 

The internal gas energy density E is related to the gas pressure through an ideal 
equation of state 

P=(‘r--l)E, (19) 

where 7 stands for the adiabatic gas index. 
The basic difference is that the structures which should be resolved are not given 

explicitly through analytic functions; instead they are determined implicitly by the 
solution of the whole system of equations. The hydrodynamical equations are dis- 
cretized according to the rules of Winkler, Norman, and Mihalas [18], but we use 
only a simplified first order version of their difference scheme. For this reason we 
only resolve gradients in the solution. The discretized system leads to a nonlinear 
system of algebraic equations which is augumented by the grid equation (11). The 
coupled system of hydrodynamic and grid equations is solved using a straight 
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forward Newton-Raphson method. We get basically a blocked pentadiagonal 
matrix of derivatives which has to be inverted (we refer to standard textbooks or, 
e.g., to [ 181 for more details) and usually we need 5 Newton-Raphson iterations to 
reach the desired relative acuracy of less than 10 ‘. 

We solve two different problems to demonstrate the applicability of this gridpoint 
distribution technique; in linear geometry we discuss the well-known shock tube 
problem (see, e.g., Sod [ 131) and in spherical geometry we calculate the time 
evolution of a blast wave with parameters appropriate to a supernova explosion. 

a. Shock Tube Problem 

The shock tube problem starts with a hot, high density, gas (pressure 1.0, density 
1.0) in the region 0 < x d 0.5 and a cold, low density, gas (pressure 0.1, density 
0.125) in the region 0.5 <x d 1. The gas is initially at rest and satisfies an ideal 
equation of state with y = {. At t = 0 the diaphragm separating the two regions is 
removed causing a shock wave to propagate into the low density medium and a 
rarefaction wave into the high density medium. These two flow regions are 

SPACE 

SPACE 

FIG. 5. Gridpoint motion during the creation of the initial grid for the shocktube problem. (a) As a 
function of time-step number. (b) As a function of “time.” The grid relaxes on a time scale 5 = 10m2 and 
is completely relaxed after 45. 
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separated by a contact discontinuity. At x = 0 and x = 1 we impose reflecting boun- 
dary conditions. Analytic solutions have been obtained for the early phases of the 
evolution by Riemann [ 12). 

This problem exhibits several interactions of nonlinear waves; shock reflection, 
shock merging, the interaction of a shock with a contact discontinuity and the 
reflection of a rarefaction wave (for more details see, e.g., Courant and Friedrichs 
[4]). These can easily be followed on a space-time diagram of the gridpoint motion 
(see Winkler et al. [ 171 for a more detailed description). 

To set up the initial grid distribution we describe here a very simple procedure 
which takes advantage of the built-in time dependence of the grid equation. Instead 
of solving the full system of hydrodynamics and grid equation we set p, =p(.u,), 
II, = u(.u,), and E, = E(.u,) with the functions p(.u), U(X), E(x) known from the initial 
conditions. Keeping these functions fixed we can choose the time parameter z # 0 
and start with an initially equidistant grid distribution. We iterate the system until 
the grid is stationary and this state is usually reached after 50 time steps (Fig. 5). In 
keeping with the philosophy of finite difference methods using an artificial viscosity 
we slightly smooth the initial conditions so that discontinuities are approximated 
by hyperbolic tangents with typical scales of 10 e-j. This procedure enables us to 
create an initial grid distribution from any given initial conditions for the physical 
variables. To clarify we want to state again that the time parameter t for creating 
the initial grid is not related to the actual calculation including the physical 
equations. 

Then we start the calculation with the initial grid and the full set of 
hydrodynamical equations. The parameters in Eq. (3) were X= 1, F, = 1, j= 1, 2, 3, 
with f, the density, fl the velocity, and ,fj the specific internal energy of the gas. 
Clearly by choosing other scales the performance of the grid equation for specific 
problems can be optimised, e.g., if good resolution of the velocity structure is 
important Fz should be decreased. We use 100 gridpoints, and set the “rigidity” 
parameter G( = 2 and the time constant r = 10 ‘. 

Figures 669 depict the variables at t = 0.01, t = 0.23, t = 0.32, t = 1.0. The break- 
up of the initial state into several nonlinear waves and their various interactions can 
be seen. The rounded edges of the rarefaction wave are probably a consequence of 
the low-order discret9182i305  Tw (waves ) Tjr 90  Tr 27.9003 0  T554  Twa.22ni9us consta0632  Tw (pro0 3  Tr 52.3 i1r  T157  Tc 0.0084  Tw (of ) Tj0  Tr 14.40011 ) 4003 0  TD 3 1782-0.021  Tc 0.0.70.0157  Tcrr 3 016 -0.01759up a and time. The discontinuities are represented 

in a quite satisfactory way. A useful side effect of these test calculations is that we 
can put “error-bars” on the numerical solutions: the calculated solution agrees with 
the analytic solution to better than 1 %. The reflection of the flow on the walls 
generates one additional numerical error. This so-called wall heating causes an 
unphysical entropy spike, which affects only some cells located at the wall. The 
expanding grid tends to correct this by mixing material with the correct entropy to 
the tiny fraction of overheated gas although in calculations with a large number of 
points and a small scale for the internal energy the feature remains (cf. Winkler 
rr UI. [ 17, 1 S] ). 

Figure 10 shows the space-time evolution of the gridpoints. We plot every second 
point. The point concentrations associated with the shock and the contact discon- 
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a=2 ~=10-~ 

0 

0 

FIG. 10. The gridpoint motion during the shocktube calculation. Every second gridpoint is plotted. 
The dark lines correspond to the motion of the shock and the contact discontinuity, respectively. 
At I 2 0.28 the shock is reflected at the right wall and at I -0.41 the shock interacts with the contact 

discontinuity. 

tinuity are obvious while the expansion wave, though not so pronounced, can also 
be seen. At t z 0.28 the shock reflects from the wall (.x = 1). The gridpoints are 
pulled out to resolve the remaining structures. This motion is controlled by the time 
scale parameter 5 = 10 3. After the shock reflection the gridpoints are pulled in 
again causing a horizontal black line on the plot. The same holds for the interaction 
of the contact discontinuity with the shock (t = 0.41) because now only one locally 
refined grid region is needed to resolve the two steep gradients. Since we have not 
encountered any problems during these phases, we do not incorporate an asym- 
metric time-filtering as advocated by Winkler et al. [IS]. The whole evolution 
requires about 100 time steps. On the comoving grid the solution looks almost 
stationary allowing the implicit method to take rather large time steps; typical 
Courant-numbers are in the range 10’ ‘, 

b. Spherical Blast Wave 

To demonstrate the broad applicability of the adaptive grid technique we now 
solve a problem in spherical geometry where we have to cover many orders of 
magnitude variation in both dependent and independent variables; a “standard” 
supernova exploding in the hot phase of the interstellar medium [lo]. For the 
progenitor star we use a very simple model of a red giant star; the density is taken 
to be constant at 10 ~” g cm 3 out to 5 x 10” cm and then to decrease exponen- 
tially with a length scale of lOI cm until the density of the external medium is 
reached. We assume initial pressure equilibrium and then deposit E,, = 105’ erg 
uniformly as thermal energy within a radius of lOI cm. The exact details of this 



SIMPLE ADAPTIVE GRIDS 189 

model are probably not critical for the subsequent evolution, the important 
parameters are the explosion energy Es, and the ejecta mass of five solar masses. 
The external medium is a tenuous low density gas at rest with density pext = 
5.10 “gem ’ at a temperature T,,, = 5. lo5 “K. 

We use the hydrodynamic equations written in conservative form for spherical 
geometry. The discretization is unchanged and corresponds basically to the linear 
case, but we use a tensor formulation of the artificial viscosity [ 141 and take as a 
typical length scale for broadening the shock front 10 ’ of the local shock radius. 
We also include a small amount of heat conduction (a = 10 ~” cm2 set ‘) to 
restrict the thickness of the propagating contact discontinuity (see again Winkler 
rt N/. [ 181 for more details on the actual discretization). 

The main difference in the grid equation is the use of logarithmic scaling, i.e., 
X = .Y and F, =,j;. These scales can be discretized in several ways; for this rather 
extreme problem we found it necessary to discretize F, as 

The use of a harmonic mean instead of the rather more natural arithmetic mean 
prevents the grid from “tearing” (W. M. Tscharnuter, Personal communication). If 
the arithmetic mean were used the dimensionless gradient, (,&+ , -f,,,)/(f;,, + I +f,,,), 
would be bounded (for positive j’) between plus and minus one, thus if the number 
of points in a near-discontinuity becomes small this form “saturates” and is no 
longer a good measure of the desired resolution. The grid then tends to concentrate 
all the variation in one cell. The harmonic mean essentially avoids this problem by 
making the gradient dimensionless with respect to the smaller of the left and right 
values. The arithmetic mean can be used for X, i.e., 

x, = $(-Y, + x, + , 1. 

We use ,j = 1, 2 with ,f’, the density and ,fz the specific internal energy. The time con- 
stant is set to zero, i.e., t = 0 so that the gridpoints react immediatly to changes in 
the physical variables. The spatial smoothing corresponds to a = 2 and we use 
400 gridpoints. 

The early phases of the supernova evolution are shown in Fig. 11. The stored 
thermal energy causes a strong shock to run through the extended envelope of the 
star. The first three curves correspond to this stage and depict the variables at times 
t = 103, 104, IO5 sec. At t = lo6 set the shock accelerates again down the large den- 
sity gradient which represents the stellar atmosphere. The fourth curve t = 2. 10’ set 
shows the shock in the atmosphere. The shock speed approaches the speed of light 
and we cannot draw detailed conclusions during this phase since we use only the 
Newtonian limit of the hydrodynamical equations. In any case, we do not try to 
simulate a “realistic” supernova explosion, but we consider this to be a very 
challenging test problem for our grid equation. From t = 3 x lo6 set up to 
t = 5 x 10” set the further evolution is characterized by a free expansion with the 
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following typical structure: the ejecta are separated from the external medium by a 
contact discontinuity bounded by two shocks. The interior cools down adiabatically 
and the kinetic energy of the explosion is transformed to thermal energy in the two 
shocks. The reverse shock is advected with the fluid, but moves backward relative 
to the contact discontinuity. The strong forward shock compresses the interstellar 
material. These can be seen in Fig. 11 and in more detail in Fig. 12 where we have 
plotted every gridpoint. 

At about 5 x 10” set the swept-up mass becomes comparable to the ejecta mass 
and the reverse shock runs inwards and heats the interior. This phase is shown in 
Fig. 13. The extremely low interior densities lead to very high shock velocities (1000 
times the velocity of light!). At a radius of 10” cm we impose a reflecting boundary 
condition. When the shock reaches this inner radius a disturbance propagates back 
up the density gradient, interacts with the contact discontinuity and a second 

-,-...-c 
:’ I ‘J 

FIG. 14. The gridpoint motion during the supernova calculation. Every 8th gridpoint is plotted. The 
initial point concentrations at R = 10” cm resulting from the strong gradient in the thermal energy 
deposition and at R = 5 x lOI cm resulting from the density gradient in the stellar atmosphere are clearly 
seen. At I = 2 x IO’ set the shock runs through the stellar atmosphere and speeds up to a high velocity. 
At I = 9 x 10” set the reverse shock starts travelling inwards and at I = 2.7 x lOI set a second somewhat 
weaker reverse shock runs into the interior. These two events are indicated by the horizontal motion of 
the gridpoints. The calculation was stopped when the Mach-number of the outermost shock decreased to 
unity at !  = 3.4 x 1O’j sec. 
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reverse shock forms. After this the interior is almost in pressure equilibrium 
although small disturbances remain. The internal pressure is close to the external 
pressure so that no Sedov-phase occurs. 

Figure 14 shows the complete gridpoint evolution for this calculation. The entire 
calculation ran without manual intervention and without carefully chosen 
parameters. It required about 4000 time steps and took 40 min on a CRAY-1 com- 
puter. The smallest timestep was lo- I2 set and the largest 10” sec. The maximum 
point concentration was 109. 

CONCLUDING REMARKS 

The two solutions exhibited in the last section demonstrate that the use of Simple 
Adaptive Grid Equations (our favourite acronym is SAGE) constitutes a valuable 
technique for the numerical solution of evolution equations in one spatial dimen- 
sion. An extension of the method to multidimensional problems would appear to be 
possible by defining R and n as tensors. However this must await the further 
development of multidimensional implicit finite difference methods and it may be 
that grid refinement methods [l] are better in more than one dimension. 
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